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Abstract

We examine thermal oscillation and resonance (with respect to time) described by the dual-phase-lagging heat-
conduction equations analytically. Conditions and features of underdamped, critically damped and overdamped os-
cillations are obtained and compared with those described by the classical parabolic heat-conduction equation and the
hyperbolic heat-conduction equation. Also derived is the condition for the thermal resonance. Both the underdamped
oscillation and the critically damped oscillation cannot appear if the phase lag of the temperature gradient 7t is larger
than that of the heat flux 7. The modes of underdamped thermal oscillation are limited to a region fixed by two re-

laxation distances defined by \/atr(y/(tq/7r) + /(tq/7r) — 1) and Jarr(y/(tg/7r) — /(1q/7r) — 1) for the case of
tr > 0, and by one relaxation distance 2,/azy for the case of tr =0. Here o is the thermal diffusivity of the me-

dium. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The high-rate heating is developing rapidly due to the
advancement of high-power short-pulse laser technolo-
gies [1-5]. The phonon—electron interaction model [6],
the phonon scattering model [7,8], and the dual-phase-
lagging model [9,10] are developed in examining energy
transport involving the high-rate heating in which the
non-equilibrium thermodynamic transition and the
microstructural effect become important associated with
shortening of the response time. These models lead to
the dual-phase-lagging heat-conduction equation [10]. In
addition to its application in the ultrafast pulse-laser
heating, the dual-phase-lagging heat-conduction equa-
tion also arises in describing and predicting phenomena
such as temperature pulses propagating in superfluid
liquid helium, non-homogeneous lagging response in
porous media, thermal lagging in amorphous materials,
and effects of material defects and thermomechanical
coupling [10]. A study of the behavior of temperature
field based on the dual-phase-lagging heat-conduction
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equation is thus of considerable importance in under-
standing and applying these rapidly emerging technol-
ogies.

The dual-phase-lagging heat-conduction equation
was shown to be both admissible within the frame-
work of the second law of the extended irreversible
thermodynamics [10] and well posed in a finite region
of n-dimension (n = 1) under Dirichlet, Neumann or
Robin boundary conditions [11,12]. Solutions of one-
dimensional (1D) heat conduction were obtained in
[9,13-18] for some specific initial and boundary con-
ditions. Wang and Zhou [19] developed methods of
measuring the phase lags of the heat flux and the
temperature gradient and obtained analytical solutions
for regular 1D, 2D and 3D heat-conduction domains
under essentially arbitrary initial and boundary con-
ditions. The solution structure theorems were also
developed for both mixed and Cauchy problems of
dual-phase-lagging heat-conduction equations [11,19]
by extending those for the hyperbolic heat conduction
[20]. These theorems express contributions (to the
temperature field) of the initial temperature distribu-
tion and the source term by that of the initial time-
rate change of the temperature, uncover the structure
of temperature field and considerably simplify the
development of solutions. The thermal features
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Nomenclature

relaxation distance, m
relaxation distance, m

critical damping coefficient, s~
damping coefficient, s~!
thermal conductivity, m~' K
length, m

volumetric heat source, W m~
temperature, K

time, s

3

described by the dual-phase-lagging heat-conduction
equations have, however, not been sufficiently ad-
dressed. In particular, the conditions and features of
thermal oscillation and resonance and their difference
with those in the classical and hyperbolic heat
conductions are not available. This stimulates the
present work to examine the thermal oscillation and
resonance in dual-phase-lagging heat conductions an-
alytically.

2. Thermal oscillation

Without losing the generality, consider the 1D initial-
boundary value problem of dual-phase-lagging heat
conduction

rtfor T\ _®r o7

a\o %2 ) T T Toren

1 oS

+%<S+rqa)7 (0,7) x (0,+400),

T(0,¢) =T(l,) =0, )

whose solution represents the temperature distribution
in an infinitely wide slab of thickness /. Here ¢ is the time,
T the temperature, o the thermal diffusivity of the me-
dium, S the volumetric heat source, ¢ and y are given
functions, 7t and 14 are the phase lags of the tempera-
ture gradient and heat flux vector, respectively.

For a free thermal oscillation, S = 0. By taking the
boundary conditions into account, let

00

T(x,)) = I,(1)sinf,x, 2)

m=1

! We restrict our study, in the present work, to the case of
constant tr and 7q. The effects of temperature-dependent
properties on the system characteristics are the topic of future
study.

b coordinate, m

o thermal diffusivity, m? s~!

Cm damping ratio parameter

N non-dimensional parameter

Tq phase lag of heat flux vector, s

Tr phase lag of temperature gradient, s

¢ initial temperature distribution, K

W initial time-rate change of temperature, K s7!

Q frequency of heat source, s~

o,  modal frequency, s~!

where

mmn

="

Using the Fourier sine series to express ¢ and y as

$(x) =Y ¢y, sin B x 3)
m=1

and

Y(x) =Y ¥, sinp,x, (4)
m=1

where

2 /! o
bu=7 [ B@sinpd
0
and
2 1
=7 [ W(Osingzac
0
A substitution of (2)—(4) into (1) yields, by making use of
the orthogonality of sinf§,x (m=1,2,...),
tol + (14 are o)1 + Bool, = 0, (5)

Introduce the damping coefficient f,, by

1
f m=—+ TTw,zn

Tq
and the natural frequency coefficient w,, by
oc[)’i

Tq

2
W, =

Eq. (5) reduces to
fm +ff;zrm + a)i,rm - 0 (7)

The solution of Eq. (7) can be readily obtained by the
method of undetermined coefficients as

I,(t) = be* (8)
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with 2 as a coefficient to be determined. Substituting Eq.
(8) into Eq. (7) leads to

Pt fud @’ =0, 9)

which has solutions 4;, 4,:
;,1.2:—%1 VA4. (10)

Here 4 is the discriminant of Eq. (9) and is defined by

2
4= (%) —(ufn.

Therefore, a positive, negative and vanished discrimi-
nant yields two distinct real A;,/,, two complex conju-
gate 1y,/,, and two equal real 1;, 4,, respectively. The
critical damping coefficient f,,. is referred to the
damping coefficient at a fixed w,, and 4 = 0. Therefore,

fmc = 2(1),,1. (11)
The non-dimensional damping ratio, {,,, is defined as the
ratio of f,, over f,.,

/m 4fm 1 TTWpy
=" = ) 12
Foe 20, 2tgon 2 (12)

G

The system is at underdamped oscillation, critically
damped oscillation or overdamped oscillation, re-
spectively, when {,, < 1, {,, =1 or {,, > 1. By (10) and
(12), we have an expression of 4, in terms of {,, and w,,,

;vl‘zzwm(—gmi\/giﬂi) (13)

2.1. Underdamped oscillation

For this case ({,, < 1), we have two complex conju-
gate Ay, /,,

;,l.zzwm(—cmii\/1—cfn). (14)
Therefore

+ by, sin w,,11/ 1 —Cfn). (15)

After the determination of integration constants a,, and
b,, by the initial conditions [Eq. (6)], we have

(1) = e tmomt (am cosw,tr/1 — ¢

I(t) = e ont | ¢ cosmuty/1 — Cfn

+‘p"’“—\/@" sinwnty/1- 2 |, (16)

Wi 1 - Ci

which may be rewritten as

I(t) = Ay e sin(wgut + @4,).- (17)
Here,
. 2
iy %b; i (Yatboonts ) 8)
Dm
O = O\ 1 =, (19)
_ (;b D m >
= tan L m7am . 20
(pdm (l//m + mem d)m ( )

Therefore, the system is oscillating with the frequency w,,,
and an exponentially decaying amplitude 4,, e *»** [Eq.
(7)]. Fig. 1 typifies the oscillatory pattern, for {, = 0.1,
¢,, = 1.0, ¥, = 0.0 and w,, = 1.0. The wave behavior is
still observed in the dual-phase-lagging heat conduction.
However, the amplitude decays exponentially due to the
damping of thermal diffusion. This differs very much from
the classical heat conduction. {,, < 1 forms the condition
for the thermal oscillation of this kind.

Fig. 2 illustrates the variation of I',,(¢) with the time ¢
when ,, is changed to 1.0 from 0. I',, is observed to be
able of surpassing ¢,, at some instants. Such phenom-
enon is caused by the no-vanishing initial time-rate
change of the temperature and cannot appear in the
classical heat conduction. The classical maximum and
minimum principle is, therefore, not valid in the dual-
phase-lagging heat conduction.

While I',,(¢) is oscillatory, it is not periodic because of
the decaying amplitude. I',,(¢) oscillates in time with a
fixed damped period 7, given by

_2n

T (21)

D

2.2. Critically damped oscillation
For this case, {,, = 1. This requires, by Eq. (12),

:li\/l—(rT/rq). (22)

(O
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Fig. 1. Variation of I',,(¢) with the time #: {,, = 0.1, w,, = 1.0,
¢, = 1.0, ¢, =0.0.
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Fig. 2. Variation of I',,(¢) with the time #: {,, = 0.1, o, = 1.0,
¢, =1.0,y, =1.0.

Therefore, the critically damped oscillation appears
only when tp<t,. When the system is in the criti-
cally damped oscillation, we have two equal A;,4,.
Therefore,

Fm(t) — am e—rumt + bmte—(y,,,t’

which becomes after determining the integration con-
stants a,, and b,, by the initial conditions [Eq. (6)],

Tu(t) = e[y, + (Y + Onp, )] (23)

Letting d|I',,(¢)|/dt =0 and analyzing the sign of
d*|I,,(¢)|/d#2, we obtain the maximal value of |I',(¢)|

_ Y w
Mar{ir, 0 =exp{ P g, Vel
at
by = Vo (25)

On(Wyy + Onbyy)
that is positive if
l//rzn > _wm(pm!//m'

This clearly requires that i, # 0. Therefore, |I',(¢)]
decreases monotonically as ¢ increases from 0 when

lpm = wmd) lpm

This is very similar to that in the classical heat-con-
duction equation. When

2
l//m > _wmd)nz!pmu

however, |I',(#)| first increases from ¢,, to Max|[|I',(¢)]]
as ¢t increases from 0 to ¢, and then decreases mono-
tonically (Fig. 3). Therefore, although the temperature
field does not oscillate, its absolute value reaches the
maximum value at ¢ = ¢,, > 0 rather than the initial time
instant ¢ = 0.

Max[|Ca(0)]]

[Ta(®)]

Time t

Fig. 3. |I',(¢)] at the critically damped oscillation and
Vi > —Onbuli:

2.3. Overdamped oscillation
For this case ({,, > 1), we have

)~1,2 = Wy ( - Cm + \/ Ci - 1) . (26)

The solution of Eq. (7) is, thus, subject to the condition

(6),
Chbyesr RN CRERD)

ru,,,t\/,m— _m _ 2
(v fET)

m

x et ‘Vi’l} . (27)
Letting d|I",,(¢)|/d¢ = 0 leads to two extreme points,
twm =0 (28)
and
1
Iy =—
20,1/ —1

. cm—\/c;—l W/ ) + b (L +1/ 00— 1)
Gt 21y, /wm>+¢m(4m \/z,%ﬂ)

(29)

with Max1[|I,(?)|]] = |¢,,] and Max2[|[, ()] = |n
(tm2)], respectively. Therefore, |I',(¢)| decreases mono-
tonically from ¢=0 when ¢,, =0 (very like that in
classical heat conduction). When ¢,, > 0, however,
|I',(¢)] first increases from |¢,| to a maximal value
Max2[|I',(¢)]] as t increases from 0 to #,, and then de-
creases for t>t, (Fig. 4). There is no oscillation if
L > 1.
When 11 > 1,

2.2 2.2
1+ochmn >1+ocrqmlzn 221/arq¢.

I
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Max2[|Fw(t)]]

[Ca(®)]

Time t

Fig. 4. |I, ()| are the overdamped oscillation and ¢,, > 0.

This, with Eq. (12), yields
1 + tra(m?n?/1%)
2 /atq(mn/l)

Therefore the system is always at the overdamped os-
cillation if tr > 74. Consequently, there is no thermal
oscillation.

{» = 1.0 separates the underdamped modes from the
overdamped modes. Applying {,, < 1 in Eq. (12) yields
the region of m where the underdamped modes can occur:

(= > 1.

L<m<i if tg>11r>0
nC1 TCCZ g T ’ (30)

I .
m>% if g > 10 =0.
Here C;, C; and C are the relaxation distances [21] and
defined by

C=2,/u1q.

Therefore, the thermal oscillation occurs only for the
modes between [//nC, and //nC, for the case of
7q > tr > 0. This is different from the thermal wave in
the  hyperbolic heat conduction where the
oscillation appears always for the high-order modes
[21].

The behavior of an individual temperature mode
discussed above also represents the entire thermal re-
sponse if ¢(x) = Asin(mnx/l) and Y(x) = Bsin(mnx/!)
with 4 and B as constants. For the general case, a
change AI',(¢) in the mth mode would lead to a change
AL, (¢) sin(mnx/1) in T(x,t) because

o0
. mnx
E (¢ sm—

m=1

3. Resonance

For the dual-phase-lagging heat conduction, the
amplitude of the thermal wave may become exaggerated
if the oscillating frequency of an externally applied heat
source is at the resonance frequency.

Consider a heat source in the system (1) in the form of

S(x, 1) = Qg(x)e*.

Here Q, independent of x and ¢, is the strength, g(x) the
spanwise distribution, and Q the oscillating frequency.
Expand T(x,¢) and g(x) by the Fourier sine series,

Z Fm Sln 7 (31)
m=1
= ZDm sin(f,,x), (32)
m=1
where I',,(¢t) and f,, are defined in the last section, and
2 !
D,, = 7 / g(x) Sin( mx)dx‘ (33)
0

Such a T'(x,?) in (31) automatically satisfies the bound-
ary conditions in (1). Substituting Eqgs. (31) and (32) into
Eq. (1) and making use of the orthogonality of the set
sin(f3,x) yield

I(t) + 20,001 (8) + 0T, (1)
QDmoC Qt
= 1 +iQ1q)€ 34
e (1T i) (34)
whose solution is readily obtained as
(1) = B, el o, (35)
Here,
OD,,a
B, = Bo:
m kCUm Q5 (36)
0"
BQ;; = I tl (37)
V-7 razan
2(,,2"
-1 _ m=“m
! (p,) =~ (38)
P (39)
" vV O(Tqﬁm 7
Q
fo 40
e (40)

2 . .
For the resonance, |Bg: |~ reaches its maximum value.

Note that, by (37),

Q*Z
(1— Q2 44202

m=“m

|Bo, |* = (41)

Therefore, the resonance requires

3B I

oQ?

)
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Fig. 5. Variation of |Q;,| with {,, at #,, = 1.0.
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Fig. 6. Variation of |Q | with ,, at {,, = 0.5.

mr

which yields, by noting also that Q; > 0,

which € = stands for the external source frequency at

resonance. As Q' must be real, we have another con-
dition for the resonance in addition to (42),

(L4m2) =420 >t (43)

The variation of Q' with the {,, and 7, is shown in
Figs. 5 and 6. It is observed that Q' decreases as the
damping parameter {,, and the phase-lagging parameter
1,, increase. Fig. 7 illustrates the variation of |Bg: | with
@ and {, at n, = 1. For {,, = 0.9, (43) cannot be sat-
isfied. Therefore, there is no resonance when {,, = 0.9 at
n, = 1 (Fig. 7).

4. Concluding remarks

The thermal oscillation described by the dual-phase-
lagging heat-conduction equation is characterized by (,,

3.50

3.00 A
a4
2.50 A
' Ca=0.6 \
1.50 - /_\
4 \

/7 Cam08
1.00 Q\\\

0.50

B el
[~
=3
=3
L

0.00 T T T T T
0.00 1.00 2.00 3.00 4.00 5.00 6.00

Q'

Fig. 7. Variation of |B*| with Q' and {,, : n,, = 1.

defined by Eq. (12) and can be underdamped ((,, < 1),
critically damped ({,, = 1), or overdamped ({,, > 1). The
underdamped oscillating modes are in a region defined
by Eq. (30). When the phase lag of the temperature
gradient Tt is larger than that of the heat flux 7, the
system is overdamped such that there is no oscillation.
The evolution of temperature field differs from that of
classical heat conduction even when the system is at the
critically damped or overdamped state. The temperature
does not decay monotonically in general, when there is
an initial time-rate change of the temperature in par-
ticular. The classical maximum and minimum principle
is thus invalid for the dual-phase-lagging heat conduc-
tion.

Eqgs. (42) and (43) are the conditions for the ap-
pearance of thermal resonance.
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